0 N ov 2 00 3 The Torelli geometry and its applications
نویسندگان
چکیده
Let S be a closed orientable surface of genus g. The mapping class group Mod(S) of S is defined as the group of isotopy classes of orientationpreserving diffeomorphisms S → S. We will need also the extended mapping class group Mod(S) of S which is defined as the group of isotopy classes of all diffeomorphisms S → S. Let us fix an orientation of S. Then the algebraic intersection number provides a nondegenerate, skew-symmetric, bilinear form on H = H1(S,Z), called the intersection form. The natural action of Mod(S) on H preserves the intersection form. If we fix a symplectic basis in H , then we can identify the group of symplectic automorphisms of H with the integral symplectic group Sp(2g,Z) and the action of Mod(S) on H leads to a natural surjective homomorphism
منابع مشابه
Developments in Algebraic Geometry
8:00–10:00 Continental breakfast, coffee, registration 10:00–11:00 Vyacheslav Shokurov, Johns Hopkins Univ. Mumford’s legacy in birational geometry. 11:00–11:20 break 11:20–12:20 Ulrike Tillmann, Oxford Univ. Mumford’s conjecture: A topological outlook. 12:20–2:10 Lunch 2:10–3:10 Valery Alexeev, Univ. Georgia Compactification of the Torelli map: from Mumford to tropical geometry. 3:10-3:40 Coff...
متن کاملar X iv : h ep - p h / 01 11 07 2 v 2 8 N ov 2 00 1 The φa 0 γ - and φσγ - vertices in light cone QCD
متن کامل
N ov 2 00 0 THE SIMPLE GROUP OF ORDER 168 AND K 3 SURFACES
The aim of this note is to characterize a K3 surface of Klein-Mukai type in terms of its symmetry.
متن کاملar X iv : h ep - p h / 01 11 07 2 v 1 7 N ov 2 00 1 The φa 0 γ - and φσγ - vertices in light cone QCD
The φa 0 γ-and φσγ-vertices in light cone QCD Abstract We study φa 0 γ-and φσγ-vertices in the framework of the light cone QCD sum rules and we estimate the coupling constants g φa 0 γ and g φσγ utilizing ωφ-mixing. We compare our results with the previous estimations of these coupling constants in the literature obtained from phenomenological considerations .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008